# High-Efficiency Boost DC/DC Controller IC

# **PIS2300-M**

#### **General Description**

**Typical Applications** 

The PIS2300-M is a versatile controller designed for use in boost power converter and topologies that needs an external low-side N-MOSFET acting as primary switch. Besides cycle-by-cycle current limiting, current mode control scheme also makes it wide bandwidth and good transient response. The current limit can be programmed simply with an external resistor.

The switching frequency can be set in any value between 100kHz and 1MHz with a resistor or any external clock source. The PIS2300-M can be operated at high switching frequency to save the solution board size. While entering shutdown mode, the PIS2300-M only sinks 10µA and it allows power supply sequencing. It has built-in protection circuits such as thermal shutdown, short circuit protection, and overvoltage protection. Internal soft-start circuitry reduces the inrush current at start-up.

## Features

- AEC-Q100 Qualified
- Wide Input Voltage from 2.97V to 40V
- Reference Voltage with ±2.0% Accuracy
- Adjustable 100kHz~1MHz Clock Frequency
- $V_{FB} = 1.26V$
- 10µA Shutdown Current
- 1A Peak Current Limit Using Internal Driver
- Current Mode Operation
- Internal 12/4 Ω MOSFET
- External RC Compensation
- Internal Soft-Start
- High Efficiency at Light Loads
- Current Limit and Over Temperature Protection

## **Applications**

- Portable Speakers
- Offline Power Supply
- Battery Powered Device
- Set-Top Box
- Photovoltaic Inverters



## **MSOP8** Pin Configuration



**Top View** 

| Pin No. | Symbol | I/O/P | Function                                                                                                                                                                                                                                                                                                                                         |
|---------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Cymbol | 1/0/1 |                                                                                                                                                                                                                                                                                                                                                  |
| 1       | ISEN   | Р     | Current Sense. Use an external resistor in series with ground to measure the voltage drop.                                                                                                                                                                                                                                                       |
| 2       | COMP   | I     | Compensation. Use a RC/C network to do proper loop compensation.                                                                                                                                                                                                                                                                                 |
| 3       | FB     | I     | Output Feedback. Connect the external resistor divider network from output to this pin to sense output voltage. The FB pin voltage is regulated to internal 1.26V reference voltage.                                                                                                                                                             |
| 4       | AGND   | Р     | Analog Ground. Connect to exposed pad.                                                                                                                                                                                                                                                                                                           |
| 5       | PVSS   | I     | Power Ground. Connect to exposed pad.                                                                                                                                                                                                                                                                                                            |
| 6       | GATE   | 0     | Gate Drive. Connect this terminal to the gate pin of the external MOSFET.                                                                                                                                                                                                                                                                        |
| 7       | FADJ   | 0     | Frequency Adjust/Synchronization/Shutdown. A resistor connected from this pin to ground simply sets the oscillator frequency. An external clock signal at this pin will synchronize the controller to the clock. Pull on this pin for $\geq$ 30 µs will turn the device off and the device will then very few current about 5µA from the supply. |
| 8       | IN     | I     | Power Supply Input.                                                                                                                                                                                                                                                                                                                              |



## **Functional Block Diagram**



## Absolute Maximum Ratings (T<sub>a</sub>=25 °C, unless otherwise noted)

| Symbol                              | Parameter                                    | Min      | Мах | Units |
|-------------------------------------|----------------------------------------------|----------|-----|-------|
| VIN                                 | Supply voltage range                         | -0.3     | 42  | V     |
| V <sub>LV</sub> (COMP/FB/FADJ/GATE) | Low voltage range                            | -0.3     | 6   | V     |
| V <sub>ISEN</sub>                   | Current sense pin range                      | -0.4     | 0.6 | V     |
| TJ                                  | Operating junction temperature range         | -40      | 150 | °C    |
| Тѕтс                                | Storage temperature range                    | -65      | 150 | °C    |
| Electrostatic discharge             | Human body model                             |          | 2   | kV    |
| Electrostatic discharge             | Machine model                                |          | 200 | V     |
| θ <sub>JC(top)</sub>                | Thermal resistance (Junction to Case (top))  |          | 47  | °C/W  |
| θ <sub>JA</sub>                     | Thermal resistance (Junction to Air)         |          | 146 | °C/W  |
| θյв                                 | Thermal resistance (Junction to Board)       | _        | 84  | °C/W  |
| Ψυτ                                 | Junction-to-top characterization parameter   | <b>.</b> | 4   | °C/W  |
| Ψյв                                 | Junction-to-board characterization parameter |          | 80  | °C/W  |

\* Stress beyond those listed at "absolute maximum rating" table may cause permanent damage to the device. These are stress rating ONLY. For functional operation are strongly recommend follow up "recommended operation conditions" table.

## **Recommend Operating Condition**

| Symbol           | Parameter                            | Min  | Мах | Units |
|------------------|--------------------------------------|------|-----|-------|
| Vin              | Supply voltage range                 | 2.97 | 40  | V     |
| f <sub>osc</sub> | Switching Frequency range            | 0.1  | 1   | MHz   |
| TJ               | Operating junction temperature range | -40  | 125 | °C    |



## **Electrical Characteristic**

## (V<sub>IN</sub>=12V, R<sub>FADJ</sub>=40k $\Omega$ , T<sub>a</sub>=25 °C, unless otherwise noted)

| Symbol                   | Parameter                                   | Test Conditions                                                                                       | Min.   | Тур.            | Max.   | Unit  |  |
|--------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------|--------|-----------------|--------|-------|--|
| VFB                      | Feedback voltage                            | V <sub>COMP</sub> =1.4V, 3V <v<sub>IN&lt;40V</v<sub>                                                  | 1.2416 | 1.26            | 1.2843 | V     |  |
|                          |                                             | Vfadj=3V, Vin=12V                                                                                     |        | 10              |        |       |  |
|                          |                                             | Vfadj=3V, Vin=12V                                                                                     |        |                 | 15     |       |  |
| L.                       | Quisseent surrent in shutdown mode          | -40℃ <t」<125℃< td=""><td></td><td></td><td>- 15</td><td></td></t」<125℃<>                              |        |                 | - 15   |       |  |
| lq                       | Quiescent current in shutdown mode          | Vfadj=3V, Vin=5V                                                                                      |        | 5               |        | μA    |  |
|                          |                                             | Vfadj=3V, Vin=5V,                                                                                     |        |                 | 10     |       |  |
|                          |                                             | -40℃ <t」<125℃< td=""><td></td><td></td><td>10</td><td></td></t」<125℃<>                                |        |                 | 10     |       |  |
| Vuvlo                    | Under voltage lockout                       |                                                                                                       | (      | 2.5             |        | V     |  |
| VUV(HYS)                 | Input Under voltage Lock-out Hysteresis     |                                                                                                       |        | 160             |        | mV    |  |
| D                        | High-side switch R <sub>DS(ON)</sub>        | V <sub>IN</sub> =5V, I <sub>GATE</sub> =0.2A                                                          |        | 12              |        | 0     |  |
| Rds(on)                  | Low-side switch RDS(ON)                     | Vin=5V, Igate=0.2A                                                                                    |        | 4               |        | Ω     |  |
| A <sub>VOL</sub>         | Error amplifier voltage gain                | V <sub>COMP</sub> =1.4V, I <sub>EAO</sub> =100µA                                                      |        | 60              |        | V/V   |  |
| <b>g</b> м               | Error amplifier trans-conductance           | V <sub>COMP</sub> =1.4V                                                                               |        | 430             |        | μŨ    |  |
| <i>\</i> /               | Maximum GATE driving swing                  | V <sub>IN</sub> < 5.8V                                                                                |        | V <sub>IN</sub> |        | V     |  |
| Vgate                    |                                             | V <sub>IN</sub> ≥ 5.8V                                                                                |        | 5.7             |        |       |  |
| <b>f</b>                 |                                             | R <sub>FADJ</sub> =40kΩ                                                                               |        | 0.44            |        | - MHz |  |
| fosc                     | Oscillation frequency                       | R <sub>FADJ</sub> =40kΩ ,-40°C <tj<125°c< td=""><td>0.34</td><td></td><td>0.48</td></tj<125°c<>       | 0.34   |                 | 0.48   |       |  |
| DMAX                     | Maximum duty cycle                          | R <sub>FADJ</sub> =40kΩ                                                                               |        | 85              |        | %     |  |
| $\Delta V_{\text{LINE}}$ | Voltage line regulation                     | 3V <v<sub>EN&lt;40V</v<sub>                                                                           |        | 0.05            |        | %/V   |  |
| $\Delta V_{LOAD}$        | Voltage load regulation                     | IEAO Source/Sink                                                                                      |        | ±0.5            |        | %/A   |  |
| t <sub>MIN(ON)</sub>     | Minimum on-time                             |                                                                                                       |        | 410             |        | ns    |  |
| lauraur                  | Supply Current                              | R <sub>FADJ</sub> =40kΩ                                                                               |        | 2.7             |        | - mA  |  |
| ISUPPLY                  | Supply Current                              | R <sub>FADJ</sub> =40kΩ ,-40°C <tj<125°c< td=""><td></td><td></td><td>4.5</td></tj<125°c<>            |        |                 | 4.5    |       |  |
| \/                       | Current ennes threshold voltage             | V <sub>IN</sub> =5V                                                                                   | 120    | 160             | 180    | mV    |  |
| VSENSE                   | Current sense threshold voltage             | Vıℕ=5V , -40°C <t」<125°c< td=""><td>120</td><td></td><td>200</td></t」<125°c<>                         | 120    |                 | 200    |       |  |
| Vsc                      | Overlaged everant limit concerveltage       | V <sub>IN</sub> =5V                                                                                   |        | 290             |        | - mV  |  |
|                          | Overload current limit sense voltage        | Vıℕ=5V , -40°C <t」<125°c< td=""><td>240</td><td></td><td>415</td></t」<125°c<>                         | 240    |                 | 415    |       |  |
|                          | Internal componentian roma                  | V <sub>IN</sub> =5V                                                                                   |        | 90              |        | m\/   |  |
| Vsl                      | Internal compensation ramp                  | Vıℕ=5V , -40°C <t」<125°c< td=""><td>52</td><td></td><td>132</td><td colspan="2">- mV</td></t」<125°c<> | 52     |                 | 132    | - mV  |  |
| Vovp                     | Output overvoltage protection               | V <sub>COMP</sub> =1.4V                                                                               |        | 85              |        | mV    |  |
| V <sub>OVP(HYS)</sub>    | Output overvoltage protection<br>hysteresis | V <sub>COMP</sub> =1.4V                                                                               |        | 70              |        | mV    |  |

Potens semiconductor corp.



#### **Electrical Characteristic – cont.**

## (V<sub>IN</sub>=12V, R<sub>FADJ</sub>=40k $\Omega$ , T<sub>a</sub>=25 °C, unless otherwise noted)

| Symbol               | Parameter                      | Test Conditions                                                                                                                  | Min. | Тур. | Max. | Unit |  |
|----------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|--|
|                      | Error amplifier output current | Source, V <sub>COMP</sub> = 1.4V,<br>V <sub>FB</sub> = 0V                                                                        |      | 127  |      |      |  |
|                      |                                | Source, V <sub>COMP</sub> = 1.4V,<br>V <sub>FB</sub> = 0V , -40°C <t<sub>J&lt;125°C</t<sub>                                      | 65   |      | 180  | μΑ   |  |
| Ιεαο                 | (Source/Sink)                  | Sink, V <sub>COMP</sub> = 1.4V,<br>V <sub>FB</sub> = 1.4V                                                                        |      | 180  | 5    |      |  |
|                      |                                | Sink, V <sub>COMP</sub> = 1.4V,<br>V <sub>FB</sub> = 1.4V , -40°C <t<sub>J&lt;125°C</t<sub>                                      | 100  | -    | 230  |      |  |
|                      |                                | VFB=0V, COMP pin floating                                                                                                        |      | 2.38 |      |      |  |
| Veao                 | Error amplifier output voltage | V <sub>FB</sub> =0V, COMP pin floating<br>-40°C <tj<125℃< td=""><td>2</td><td></td><td>2.6</td><td rowspan="2">V</td></tj<125℃<> | 2    |      | 2.6  | V    |  |
|                      |                                | V <sub>FB</sub> = 1.4V                                                                                                           |      | 0.67 |      |      |  |
|                      |                                | V <sub>FB</sub> = 1.4V, -40°C <tj<125°c< td=""><td>0.2</td><td></td><td>1</td><td></td></tj<125°c<>                              | 0.2  |      | 1    |      |  |
|                      |                                | Output = High Level                                                                                                              |      | 1.29 |      |      |  |
| N/                   | Shutdown signal threshold on   | Output = High Level ,<br>-40°C <tj<125°c< td=""><td></td><td></td><td>1.4</td><td></td></tj<125°c<>                              |      |      | 1.4  |      |  |
| Vsd                  | FADJ pin*                      | Output = Low Level                                                                                                               |      | 0.63 |      | V    |  |
|                      | 0                              | Output = Low Level,<br>-40°C <tj<125°c< td=""><td></td><td></td><td>0.4</td><td></td></tj<125°c<>                                |      |      | 0.4  |      |  |
| tss                  | Soft start delay               | V <sub>FB</sub> = 1.2V, COMP pin floating                                                                                        |      | 9    |      | ms   |  |
| t <sub>R</sub>       | GATE pin rising time           | Cgs = $3000pF$ , V <sub>GATE</sub> = 0V to 3V                                                                                    |      | 75   |      | ns   |  |
| t⊧                   | GATE pin falling time          | Cgs = $3000pF$ , V <sub>GATE</sub> = $3V$ to $0V$                                                                                |      | 20   |      | ns   |  |
| Isd                  | Shutdown pin current FADJ pin  | V <sub>SD</sub> =0V                                                                                                              |      | 20   |      | μA   |  |
| T <sub>SD</sub>      | Thermal shutdown               |                                                                                                                                  |      | 170  |      | °C   |  |
| T <sub>SD(HYS)</sub> | Thermal shutdown hysteresis    |                                                                                                                                  |      | 10   |      | °C   |  |

\* The FADJ pin should be pulled to VIN through a resistor to turn the regulator off. The voltage on the FADJ pin must be above the maximum limit for Output = High Level to keep the regulator off and must be below the limit for Output = Low Level to keep the regulator on.

**Reficiency Boost DC/DC Controller IC** 

# **PIS2300-M**

## **Functional Descriptions**

The PIS2300-M employs the current-mode, adjustable frequency pulse-width modulation (PWM) architecture. It operates at adjustable switching frequency under medium to high load current conditions.

#### **Overvoltage Protection**

The PIS2300-M uses FB pin to detect overvoltage occurrence. The overvoltage protection should be triggered at the voltage rises to  $V_{FB} + V_{OVP}$ . When OVP occurs only the MOSFET will be turned off, the output voltage will drop. PIS2300-M will switch when the voltage on FB pin is less then  $V_{FB} + (V_{OVP} - V_{OVP(HYS)})$  for limit on  $V_{OVP(HYS)}$ .

#### Frequency Adjust

The switching frequency can be adjusted from 100kHz to 1MHz by a external resistor in series with FADJ terminal and ground. The following equation is used to calculate resistor value.

a. When Fs < 300KHz the calculate as below,

 $R_{FADJ} \cong \frac{17.5 \times 10^3}{f_s} + 8.2$  b. When Fs > 300KHz the calculate as below,

 $R_{FADJ} \cong \frac{21 \times 10^3}{f_s} - 7.3$ 

Where  $f_{\text{S}}$  is in kHz and  $R_{\text{FA}}$  is in  $k\Omega.$ 

#### Clock Synchronization

PIS2300-M is able to be synchronized to an external clock by connecting to the FADJ terminal with  $R_{FADJ}$  in series with ground as shown in figure 2.



Figure 2. Clock Synchronization

#### Shutdown

The FADJ pin can be used as a shutdown pin. If the high signal pulls up this pin, PIS2300-M will stop the switching and then enter the shutdown state. In this state, PIS2300-M consumes only 5µA typically.

The use of shutdown control in frequency adjustment mode is quite simple. Connects a resistor between the FADJ pin and ground will force the PIS2300-M runs at specified frequency and pulls this pin high will shutdown the IC. In both frequency and synchronization mode, pulls FADJ pin high lasting then 30µs will also force the PIS2300-M enter the shutdown state.

#### Slope Compensation

PIS2300-M employs current mode control scheme. It has many advantages such as cycle-by-cycle current limit for the switch and easier to parallel power stages because automatic current sharing. The compensation ramp is already added in PIS2300-M and the slope of the default compensation ramp could satisfy most applications.

#### Short Circuit Protection

The ISEN pin is used to sense the over-current occurrence. If the difference between ISEN pin and ground is greater than 330mV, the current limit will be activated. The comparator will decrease the switching frequency by the factor of 8 and maintains this condition until the over-current (short) event is removed.

Potens semiconductor corp.

## **Application Information**

#### Programming the Output Voltage and Output Current

The output voltage can be programmed using a resistor divider between the output and the feedback pins, as shown in Figure 3. The resistors are selected such that the voltage at the feedback pin is 1.26V. R<sub>F1</sub> and R<sub>F2</sub> can be selected using the equation,

$$V_{OUT} = V_{FB} \times (1 + \frac{R_{F1}}{R_{F2}})$$

A 100pF capacitor may be connected between the feedback and ground pins to reduce noise.

The maximum amount of current that can be delivered at the output can be controlled by the sense resistor,  $R_{SEN}$ . Current limit occurs when the voltage that is generated across the sense resistor equals the current sense threshold voltage,  $V_{SENSE}$ . Limits for  $V_{SENSE}$  have been specified in the Electrical Characteristics section. This can be expressed as:

$$I_{SW(pexk)} \times R_{SEN} = V_{SENSE} - D \times V_{SL}$$

The peak current through the switch is equal to the peak inductor current.

$$I_{SW(pexk)} = I_L(\max) + \Delta i$$

Therefore for a boost converter,

$$I_{SW(pexk)} = \frac{I_{OUT(max)}}{(1-D)} + \frac{(D \times V_{IN})}{(2 \times f_s \times L)}$$

Combining the two equations yields an expression for  $R_{\text{SEN}}$ ,

$$R_{SEN} = \frac{V_{SENSE} - (D \times V_{SL})}{\left[\frac{I_{OUT(\max)}}{(1-D)} + \frac{(D \times V_{IN})}{(2 \times f_S \times L)}\right]}$$

Evaluate  $R_{\text{SEN}}$  at the maximum and minimum  $V_{\text{IN}}$  values and choose the smallest  $R_{\text{SEN}}$  calculated.



Figure 3. Adjusting the Output Voltage



Figure 4. PIS2300-M Typical Boost



# **Typical Characteristic**







# **Typical Characteristic (cont.)**



# **MSOP8 PACKAGE INFORMATION**



|             | SYMBOLS | MIN. | NOM.     | MAX.      |
|-------------|---------|------|----------|-----------|
|             | A       |      | -        | 1.10      |
|             | A1      | 0.00 | -        | 0.15      |
|             | A2      | 0.75 | 0.85     | 0.95      |
| $\triangle$ | b       | 0.22 | -        | 0.38      |
| 6           | с       | 0.08 | -        | 0.23      |
|             | D       |      | 3.00 BSC |           |
|             | E       |      | 4.90 BSC |           |
|             | E1      |      | 3.00 BSC |           |
| ∕ଈ          | е       |      | 0.65 BSC |           |
|             | L       | 0.40 | 0.60     | 0.80      |
|             | L1      |      | 0.95 REF |           |
|             | θ.      | 0    | -        | 8         |
|             |         |      |          | UNIT : MM |

NOTES:

1.JEDEC OUTLINE :

STANDARD : MO-187 AA. THERMALLY ENHANCED : MO-187 AA-T.

- 2.DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER END. DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR
- PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15 mm PER SIDE.
- 3.DIMENSION 'b' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE 'b' DIMENSION AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.

4.D AND E1 DIMENSIONS ARE DETERMINED AT DATUM [H].

Potens semiconductor corp.