PIS2100

General Description

The PIS2100 is a high efficiency full-bridge buckboost DC/DC controller designed for use in voltage step-up or step-down converting application. It operates over a wide input range from 4.2V to 42V and is capable of adjusting output voltage up to 45V. Current mode control scheme also makes it wide bandwidth and good transient response. The operating frequency can be adjusted simply with an external resistor or any external clock source between 100kHz and 600kHz. Its internal gate driver provides 2A peak current driving capability.

The PIS2 100 also provides input/output average current sensing and limiting function, optional CCM/DCM operation, optional EMI improvement and power status indication pin. This device features lots of protection such as cycle-by-cycle current limiting, input under voltage lockout, output over voltage, short, over temperature and optional hiccup mode in sustained overload conditions. Programmable soft-start circuitry reduces the inrush current at start-up.

Typical Applications

Features

- 4-Switch Step-Up/Step-Down Operation
- Wide Input Voltage from 4.2V to 42V
- Adjustable Output Voltage from 0.8V to 45V
- Adjustable 100kHz~600kHz Clock Frequency
- Optional Frequency Synchorization/Dithering
- 2A Peak Current Limit Using Internal Driver
- Current Mode Operation
- External RC Compensation
- Programmable Soft-Start and Input UVLO
- High Efficiency at Light Loads
- Power Good Indication
- Output Over-Voltage Protection
- Output Short Voltage Protection
- Current Limit and Over Temperature Protection
- TSSOP28EP Exposed Pad Green Package with RoHS Compliant

Applications

- USB Power Delivery
- Industrial Power Supplies
- Battery and Super-Capacitor Charging
- LED Lightning
- Automotive Start/Stop Systems

TSSOP-28 EP Pin Configuration

Pin No.	Symbol	I/O/P	Function		
			Chip Enable. For EN<0.7V, the PIS2100 enters shutdown mode.		
1 EN I		I	For 0.7V <en<1.23v, but="" en="" enabled="" for="" is="" no="" pwm="" switching.="" vreg="">1.3V, PWM</en<1.23v,>		
			switching is enabled. TTL Logic levels with compliance to V_{IN} .		
2	IN	Р	Power Supply Input. Connect this pin to power supply.		
3	VISEN	I	Input Voltage Sense Input. Connect this pin close to input capacitors.		
	OTDI		Mode Control. Connect a resistor to ground to configure CCM/DCM operation and		
4	CTRL	I	hiccup mode. See functional description for setting table.		
			Frequency Dithering Adjust. Connect a capacitor to ground to make the PIS2100 PWM		
5	DITH	1	modulation frequency swing in $\pm 5\%$ of the frequency specified by FADJ external resistor.		
			Leave this pin unconnected for disabling this feature.		
			Frequency Adjust or Synchronization. A resistor connected from this pin to ground		
6	FADJ	L L	simply sets the oscillator frequency. An external clock signal at this pin will synchronize		
			the controller.		
	SLOPE		Slope Compensation. Connect a capacitor to ground to perform slope compensation for		
	SLOPE		buck-boost operating stabilization.		
	6		Soft-Start Programming. Connect a capacitor to ground to program the soft- start		
8	SS	I	time.		
9	COMP	0	Compensation. Use a Type II RC//C network to do proper loop compensation.		
10	AGND	Р	Analog Ground.		
44			Output Feedback. Connect the external resistor divider network from output to this pin		
11	FB	I	to sense output voltage.		
12	VOSEN	I	Output Voltage Sense Input. Connect this pin close to output capacitors.		

13	ISENSN	I	Average Current Limit Negative Input.			
13		I				
14	ISENSP		Average Current Limit Positive Input.			
15	CSG	I	egative Current Amplifier Input.			
16	CS	I	Positive Current Amplifier Input.			
17	PGOOD	OD	Power Good Indicator (Open Drain). PGOOD is pulled low if FB pin is outside specified V_{FB} regulation.			
18	LX2	I	2nd Switching Node. LX2 is the 2nd switching node.			
19	HSDRV2	0	2nd High-Side Drive Pin.			
20	BS2		Bootstrap I/O for 2nd High-Side Switch.			
21	LSDRV2	0	2nd Low-Side Drive Pin.			
22	PVSS	Р	Power Ground. The ground connection to all low-side gate drivers.			
23	VREG	0	Internal Regulator. Connect a capacitor to ground.			
24	VBIAS	I	Output Bias Connection. Connect this pin to output to improve efficiency.			
25	LSDRV1	0	1st Low-Side Drive Pin.			
26	BS1		Bootstrap I/O for 1st High-Side Switch.			
27	HSDRV1	0	1st High-Side Drive Pin.			
28	LX1	I	1st Switching Node. LX1 is the 1st switching node.			
	Exposed	Р	Thermal Ground. The pad should be soldered to the analog ground with low thermal			
	 Pad		resistance.			

~~

PIS2100

Functional Block Diagram

Absolute Maximum Ratings (Ta=25 °C, unless otherwise noted)

Symbol	Parameter	Min	Мах	Units
VIN	Supply voltage range	-0.3	45	V
V _{IN(HV)} (EN/VISEN/VOSEN/ ISENSP/ISENSN)	High voltage input range	-0.3	50	V
VIN(HV)(VBIAS)	High voltage bias input range	-0.3	40	V
V _{IN(LV)} (FB/SS/DITH/FADJ/SLOPE)	Low voltage input range	-0.3	3.6	V
V _{REG} (VREG/CTRL/PGOOD)	Internal regulator related pin input	-0.3	6	V
LSDRV1 , LSDRV2 BS1 , HSDRV1 to LX1 BS2 , HSDRV2 to LX2	Input Voltage range	-0.3	6	V
Vsw(LX1)	Switch Node Voltage	-1	45	V
V _{SW} (LX2)	Switch Node Voltage	-1	48	V
V _{BS} (BS1)	Bootstrap node voltage	-0.3	50	V
V _{BS} (BS2)	Bootstrap node voltage	-0.3	53	V
CS, CSG	Sense Pins Differential Input Voltage Range	-0.3	0.3	V
TJ	Operating junction temperature range	-40	150	°C
Тѕтс	Storage temperature range	-65	150	°C
Electrostatic discharge	Human body model		2	kV
Electrostatic discharge	Machine model		200	V
θJC	Thermal resistance (Junction to Case)		16	°C/W
θ _{JA}	Thermal resistance (Junction to Air)		37	°C/W

* Stress beyond those listed at "absolute maximum rating" table may cause permanent damage to the device. These are stress rating ONLY. For functional operation are strongly recommend follow up "recommended operation conditions" table.

Recommend Operating Condition

Symbol	Parameter	Min	Мах	Units
V _{IN} (IN)	Supply voltage range	4.2	42	V
Vin(VISEN)	Supply Input with VOUT connected (VOUT≥5V or IN≥4.5V)	2.5	42	V
VBIAS	Auxiliary Supply Voltage	6	36	V
VIN(VOSEN)	Output Sense Input Voltage Range	0.8	45	V
EN	Enable Pin Input Voltage	0	42	V
ISENSP, ISENSN	Sense Pin Input Voltage	0	45	V
f _{osc}	Switching Frequency range	100	600	kHz
ТА	Operating free-air temperature range	-40	85	°C
TJ	Operating junction temperature range	-40	125	°C

Potens semiconductor corp.

Electrical Characteristic

(V_{IN}=24V, F_{ADJ}=82k, T_J=25 $\,\,^\circ\! C,$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
SUPPLY VO	LTAGE					
V _{IN}	Input voltage		4.2		42	V
Isd	Shutdown mode supply current	V _{EN} =0V		12	16	μA
ISTBY	Standby mode supply current	V _{EN} =1.1V, non-switching		1	2	mA
lq	Operating current	V _{EN} =2V, V _{FB} =0.9V		2.19	4	mA
ENABLE/UV	/LO					
Ven(stby)	Standby threshold voltage	V _{EN} rising	0.55	0.79	0.97	V
I _{EN(STBY)}	Standby mode pin source current	V _{EN} =1.1V		2	3	μA
Ven(oper)	Operating threshold voltage	V _{EN} rising	1.17	1.23	1.29	V
I _{HYS(OPER)}	Operating hysteresis current	V _{EN} =2.4V	1.5	3.5	5.5	μA
VOUT	·					
V _{VBIAS(SW)}	Internal bias switchover voltage			5.75		V
ERROR AM	PLIFIER					
V _{FB}	Feedback reference voltage	V _{EN} =2V,FB connect to COMP	0.788	0.8	0.812	V
I _{FB}	Feedback bias current	V _{FB} =0.1V			0.1	μA
BW	Unity gain bandwidth			2		MHz
	COMP source current	FB=V _{REF} -300mV, COMP=0V		306		μA
ICOMP	COMP sink current	FB=V _{REF} +300mV, COMP=3V		309		μA
G M(EA)	Error amplifier trans-conductance			1490		μS
VREG						
Vreg	Internal regulation voltage	EN=2V, VOUT pin open, VREG pin open	5.1	5.3	5.5	V
Vuv	VREG UVLO threshold	V _{REG} rising		3.3		V
Rout(VREG)	LDO Output impedance	I _{OUT} =0.03A, V _{IN} =3.5V		9.3	16	Ω
	UVLO hystersis			160		mV
IOUT(VREG)	VREG maximum supply current	VIN=3.5V, VREG=0V		65		mA
PGOOD		1		•		
	PGOOD trip ratio for FB (Falling)	Ratio to V _{FB}		-9		%
Vpgood	PGOOD trip ratio for FB (Rising)	Ratio to V _{FB}		10		%
	Hystersis			1.6		%
ILEAK(PGOOD)	PGOOD leakage current	FB=0.8V, Vpgood=5V			100	nA
ISINK(PGOOD)	PGOOD sink current	FB=0V, V _{PGOOD} =0.4V	2	4.2	6.5	mA

Electrical Characteristic – cont.

(V_{IN}=24V, F_{ADJ} =82k, T_J =25 °C, unless otherwise noted)

Symbol	Parameter	Test C	onditions	Min.	Тур.	Max.	Unit
FREQUENC	Y/SYNC/DITHER						
PWsync	SYNC input pulse width			75		500	ns
4		R _T =133kΩ			200		kHz
f _{sw}	PWM switching frequency	V _{FB} =0.7V	R⊤=47kΩ		500		kHz
VSYNCH	SYNC input high threshold			2.1			V
VSYNCL	SYNC input low threshold					1.2	V
	Dither high threshold				1.27		V
VDITHER	Dither low threshold				1.16		V
DITHER	Dither source/sink current	DITHER=1.1V,	DITHER=1.3V		10.5		μA
SOFT STAR	RT						
Iss	Soft start pull-up current	Vss=0V	*	4.30	6	7.25	μA
Vss(CL)	Soft start clamp voltage	SS open			1.31		V
ΔV_{FB} -Vss	FB to SS offset voltage	Vss=0V			-15		mV
GATE DRIV	ER			•			
	Gate driver peak source current	river peak source current V _{BS1} -V _{LX1} =5.3V			1.8		
HSDRV1,2	Gate driver peak sink current	V _{BS1} -V _{LX1} =5.3V			2.2		
	Gate driver peak source current	V _{BS2} -V _{LX2} =5.3V			1.8		A
LSDRV1,2	Gate driver peak sink current	VBS2-VLX2=5.3V			2.2		
5	Gate driver pull-up resistance	VBS1,2-VLX1,2=5.3V			1.9		_
RHSDRV1,2	Gate driver pull-down resistance	Vbs1,2-Vlx1,2 =5 .	3V		1.3		Ω
P	Gate driver pull-up resistance	Ilsdrv1,2=0.1A			2		•
R _{LSDRV1,2}	Gate driver pull-down resistance	ILSDRV1,2=0.1A			1.5		Ω
VUV(BS1,2)	BS1,2 to LX1,2 UVLO threshold	HSDRV1,2 shu	it off		2.73		V
	BS1,2 to LX1,2 UVLO hystersis	HSDRV1,2 beg	jin switching		280		mV
	BS1,2 to LX1,2 threshold for refresh				4.45		N
	pulse				4.45		V
t	HSDRV1,2 off to LSDRV1,2 on				45		20
tотн	dead time				40		ns
tori	LSDRV1,2 off to HSDRV1,2 on				45		ns
t _{DTL} dead time					40		119
OUTPUT O	/P						
Vovp	Output overvoltage threshold	Relati	ve to FB		0.86		V
	Output overvoltage hystersis				21		mV

Electrical Characteristic – cont.

(V_{IN}=24V, F_{ADJ}=82k, T_J=25 $^{\circ}$ C, unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
CURRENT L	IMIT	•				
Vcs(buck)	Buck mode current limit threshold (Valley)	VIN=VVISNS=24V, VVOSNS=12V, VSLOPE=0V	53.2	85	98	
V _{CS(BOST)}	Boost mode current limit threshold (Peak)	Vin=Vvisns=12V, Vvosns=18V, Vslope=0V	119	165	221	mV
BIAS(CS/CSG)	CS/CSG pin bias current	Vcs=Vcsg=Vslope=0V		-95		
IOFFSET (CS/CSG)	CSG pin offset current	Vcs=Vcsg=Vslope=0V			14	μA
CONSTANT	CURRENT LOOP		C			
V _{SNS}	Average current loop regulation	$V_{ISNSN}=24V$, sweep I_{SNSP} , Measure V_{SS}	43	50	57	mV
Isns	ISNSN/ISNSP pin bias currents	VIN=VISNSP=VISNSN=24V		7		μA
gm(cs)	Current sense amplifier trans- conductance	VISNSP-VISNSN=55mV, VSS=0.5V		1		mS
SLOPE CON	IPENSATION					
	Buck adaptive slope current	Vin=Vvisns=24V, Vvosns=12V, Vslope=0V	24	30	35	
ISLOPE	Boost adaptive slope current	Vin=Vvisns=12V, Vvosns=18V, Vslope=0V	13	17	21	μA
g m(slope)	Slope compensation amplifier trans-conductance			2		μS
MODE		•				
IMODE	Source current out of MODE pin	MODE=0V	17	20	23	μA
VDCM_HIC	DCM with hiccup threshold voltage		0.6	0.7	0.76	
Vссм_ніс	CCM with hiccup threshold voltage		1.18	1.28	1.38	V
V _{CCM}	LSDRV1,2 off to HSDRV1,2 on dead time		2.22	2.4	2.6	v
THERMAL P	ROTECTION					
TSHUTDOWN	Thermal shutdown trip point			160		°C
	Thermal shutdown hystersis			15		Ľ

PIS2100

Functional Descriptions

The PIS2100 is a high efficiency full bridge buck-boost controller with wide input voltage range. In addition to buck mode and boost mode, PIS2100 also operates in buck-boost mode with excellent efficiency and low ripple output voltage when V_{IN} close to V_{OUT} .

PIS2100 integrates two half-bridge N-channel MOSFET gate drivers and is designed to work with 4 external MOSFET switches. When V_{IN} is greater than V_{OUT} , the PIS2100 PWM control works in valley current mode. The inductor current should be monitored for cycle-by-cycle current limit and is sensed through an external sense resistor connected to the source of low-side MOSFET switches and power ground.

When V_{IN} is lower than V_{OUT} , the PIS2100 PWM control works in peak current mode. For the application cases of lower V_{IN} (e.g. below than 6V) and higher V_{OUT} , PIS2100 is capable of supporting bias V_{OUT} terminal with V_{OUT} . In this condition, internal regulator source would be switched from V_{IN} to V_{OUT} for higher gate driver bias so that better switching efficiency would be achieved.

Besides cycle-by-cycle current limiting, the PIS2100 supports average current sense scheme for either input or output current detection. Soft- start is also supported with an external capacitor connected to ground to eliminate inrush current and voltage overshoot during startup.

PIS2100 supports continuous conduction mode (CCM) for noise sensitive application such as audio or radio frequency use and discontinuous conduction mode (DCM) for higher light load efficiency such as backup power application. For the output overload/short condition PIS2100 provides optional hiccup mode to reduce the heat and damage during sustained overload case. If the hiccup mode is disabled the controller remains in a cycle-by-cycle current limit until the overload case is fixed. Use CTRL terminal to configure CCM/DCM operation and hiccup mode selection.

The PIS2100 supports over-voltage protection and power good status indication. If the output feedback voltage exceeds then 7.5% or above nominal reference $V_{REF}(0.8V)$ the high side drivers would be turn off. PGOOD terminal would be externally pulled high when FB pin voltage is regulated within +10% and -9% centered with V_{REF} .

The PIS2100 can operate in shutdown state, standby state and normal operation state. It can be configured with setting EN terminal with 3 distinct voltage ranges.

Operation States

The PIS2100 has chip enable and under-voltage lock out protection. When EN pin voltage is below than standby threshold 0.79V, the controller enters the shutdown state and most of the functional blocks are disabled including V_{REG} regulator.

When EN voltage is greater than standby threshold but less than the operating threshold 1.23V, both internal V_{REG} regulator and V_{BIAS} bias input are enabled but the controller will still not start up and hence no switching.

When EN voltage is greater than operating threshold, the controller will start switching if the V_{REG} is also above V_{REG} under-voltage threshold (3.3V). If V_{REG} is still under UV threshold, the PIS2100 will not switch. Table 1 shows the relation between the state and EN pin threshold voltage range.

To implement UVLO protection, the simplest way is to use a resistor network from $V_{1\!N}$ to AGND with

Potens semiconductor corp.

PIS2100

Functional Descriptions (cont.)

the mid-point connect to EN pin. The turn-on threshold can be obtained by equation 1.

(1)
$$V_{IN(EN)} = 1.23V \times \left(1 + \frac{R_{EN2}}{R_{EN1}}\right) - R_{EN2} \times 1.5\mu A$$

(2)
$$\Delta V_{HYS(EN)} = 3.5 \mu A \times R_{EN2}$$

Equation 2 shows the hysteresis between the UVLO turn-on and turn-off threshold and can be obtained with this equation. Beware of the EN pin source current is about 3.5µA when EN pin voltage is above 1.23V.

Figure 1.	Programming	ΕN	pin
-----------	-------------	----	-----

EN	Vreg	State
EN<0.79V	N/A	Shutdown
0.79V <en<1.23v< td=""><td>N/A</td><td>Standby</td></en<1.23v<>	N/A	Standby
EN>1.23V	VREG<3.3V	Standby
EN>1.23V	VREG>3.3V	Operating, Switching

Table 1. EN pin threshold voltage

Frequency Adjustment

It is simply to use an external resistor to adjust the PWM clock frequency. Connect a resistor from FADJ terminal to AGND to program switching frequency from 100kHz to 600kHz. Equation 3 shows how to calculate the external resistor:

(3)
$$R_{T} = \frac{\left(\frac{1}{F_{SW}} - 200ns\right)}{37 \, pF}$$

The PIS2100 can be synchronized with external clock source. Figure 2 demonstrates the connection to AC clock source. The external clock frequency should be higher than resistor programmed frequency. Beware of the pulse width of the external PWM clock should be in range from 75ns to 500ns and the pulse amplitude must not exceed 3.3V.

Figure 2. External Clock Synchronization

Frequency dithering is an important skill to improve EMI performance. Connect a capacitor from DITH pin to AGND to enable this function. Equation 4 shows the calculation of dithering capacitance:

$$C_{DITH} = \frac{10\mu A}{f_{SW} \times 0.24V}$$
(4)

Connect the DITH pin to ground to disable this function. Dithering function is also disabled when using external clock input.

Soft Start

The PIS2100 provides soft start scheme to prevent transient during startup and could be adjusted by a soft start capacitor connected from SS terminal to AGND. During powering up, an internal current source charges the soft start capacitor. When the SS pin voltage below the feedback reference V_{REF} , soft-start block raises the FB voltage with the same slope as the SS pin. After SS pin voltage exceeds V_{REF} , the soft-start period is finished and the output voltage is almost reached to desired output value. Soft-start time is calculated by equation 5:

Potens semiconductor corp.

Functional Descriptions (cont.)

$$t_{ss} = \frac{C_{ss} \times 0.8V}{5\mu 4}$$

SS pin will be discharged in the following 3 conditions, EN falling below UVLO voltage and VREGUV threshold, enter hiccup mode and thermal shutdown state. When average current limiting is active, the SS pin would be also discharged by the constant current loop trans-conductance amplifier to limit the current.

Average Current Limit

To implement current limit protection of input or output, a constant current trans-conductance amplifier is integrated in the PIS2100. An additional current sense resistor connected in series with the ISENSP and ISENSP pins to monitor the voltage drop and compare it with internal 50mV reference. If the voltage drop is greater than 50mV then the constant current loop trans-conductance amplifier gradually discharges the soft-start capacitor to pull low the output voltage to limit the input or output current. Use equation 6 to obtain the current limit value. Short ISENSP and ISENSN to disable this function.

$$I_{CL(AVG)} = \frac{50mV}{R_{SENS}}$$

(6)

CCM/DCM Operation

CTRL pin	Mode	Protection
Direct to VREG	ССМ	Cycle-by-cycle limit
Use 91k to AGND	ССМ	Hiccup
Use 47k to AGND	DCM+CCM	Hiccup
Direct to AGND	DCM+CCM	Cycle-by-cycle limit

Table 2. CTRL Pin Selections

The PIS2100 allows the operation mode change of continuous conduction (CCM) or discontinue conduction (DCM). For noise sensitive application such as audio amplifier, the switching noise needs to be filtered to prevent any hearable noise. CCM operation the inductor current can flow in either direction and the controller switches at a fixed frequency regardless of the load current.

In DCM operation, when the inductor current reaches zero the synchronous rectifier MOSFETs emulates diodes as LSDRV1 or HSDRV2 turn-off for the rest of the PWM cycle at light load to reduce switching losses as possible. DCM operation results in reduced and variable frequency operation which increases light load efficiency of the converter. Table 2 shows how the CTRL pin configures the operation mode. The mode is latched at startup.

Over-current Protection

In buck operation, the sensed valley voltage across R_{SENSE} is limited to 85mV. If the sensed value is not below this threshold during the buck switch offtime, the high-side buck switch skips a cycle. In boost operation, the maximum peak voltage across the R_{SENSE} is limited to 165mV. If the peak current in boost switch causes the CS pin to exceed this threshold, the low-side boost switch is turned-off for the rest of the clock.

Use proper connection networks defined in Table 2 to configure PIS2100 in the appropriate working manner. If the hiccup mode (CCM or DCM) is enabled, the controller shuts down after detecting cycle-by-cycle current for 128 cycles and then the soft-start capacitor is discharged. After 4000 clock cycles the SS pin resumes to charge soft-start capacitor again and the controller starts over again.

If the hiccup mode is not enabled, the PIS2100 will perform cycle-by-cycle current limit when overload condition occurs.

PIS2100

Functional Descriptions (cont.)

Output Over-voltage Protection

PIS2100 will turns off the 2 gate drivers when the feedback voltage is 7.5% greater than the nominal reference voltage V_{REF} . Once the feedback value falls in 5% of V_{REF} , the PIS2100 resumes switching.

Internal Regulator and VBIAS Input

Since the PIS2100 uses half-bridge gate drivers and high side NMOSFET gate bias should be generated from internal V_{REG} with boot-strap circuits. For V_{IN} is less than the certain of value, the V_{REG} voltage tracks V_{IN} with few voltage drop. Otherwise the internal regulator V_{REG} voltage will be fixed and regulated. The on/off scheme follows the control mechanism of EN pin as previous described.

When V_{OUT} is greater than V_{REG} nominal value plus one more diode drop, the internal regulator will use V_{OUT} to regulate internal V_{REG} instead of using VIN. In buck mode, connect V_{BIAS} pin to V_{OUT} with V_{OUT} value greater then 7V will improve the efficiency. Please be aware that the voltage on V_{BIAS} pin should not exceed then 36V.

If V_{IN} is lower and working topology is boost, use higher output voltage and feed it back to V_{OUT} to generate internal V_{REG} is a good idea. For this case, place a series blocking diode between the input power source and IN terminal to prevent V_{REG} back-feeding into IN pin through internal MOSFET body diode.

 V_{REG} grounding capacitor is good to use a 1µF ceramic capacitor and is better to be placed close to V_{REG} pin.

Power Good Indicator

PGOOD terminal is pulled high when the voltage at the FB pin is within range of -9%~+10% of the nominal V_{REF} voltage. Otherwise the PGOOD is pulled low. Since the PGOOD is open drain output, it is needed to add pull-up resistor and the pull down strength of the internal MOSFET is about 4.2mA. Since the MOSFET is low voltage device, do not connect the pull-up resistor to 5.5V or higher.

Slope Compensation

The PIS2100 performs a slope compensation based on the current sense signal monitored across the CS and CSG pins with the composition of the V_{IN}, V_{OUT} and SLOPE pin signals. The result is compared to the COMP error voltage by PWM modulator.

Petens

High-Efficiency Full Bridge Buck-Boost DC/DC Controller IC

PIS2100

Functional Descriptions (cont.)

The current mode controllers require slope compensation for stable current loop operation. In peak current mode the duty is 50% or above and below 50% in valley current mode. Use a capacitor to connect between SLOPE pin and AGND to fine tune optimal slope for various V_{IN} and V_{OUT} combination.

Loop Compensation

Figure 4. Error Amplifier Compensation Network Figure 4 shows the internal loop compensation structure. The trans-conductance amplifier output range is from 0.3V to 3V. The COMP pin output range will limit the possible V_{IN} and output current. Type II PI compensation is formed with Rc1-Cc1 to AGND in parallel with another pole compensator Cc2.

The PIS2100 will operate in buck, boost and buck-boost mode and the compensation is separated into two considerations. In buck mode, the bottom value of COMP dominates the maximum possible V_{IN} for which the controller can regulate output voltage at no load. Equation 7 shows how to calculate V_{COMP} as function of V_{IN} at no load in CCM operating.

(7)

 $(\mathbf{0})$

 $V_{COMP(BUCK)} = 1.6V - A_{CS} \cdot R_{SENSE} \cdot \frac{V_{OUT}}{2 \cdot L1 \cdot F_{SW}} \cdot (1 - D_{BUCK}) - \frac{2\mu S \cdot (V_{EN} - V_{OUT}) + 6\mu A}{C_{SLOPE} \cdot F_{SW}} \cdot (1 - D_{BUCK})$ Where D_{BUCK} is given by equation 8.

$$D_{BUCK} = \frac{V_{OUT}}{V_{IN}}$$
(8)

To increase the maximum V_{IN} range of buck operation, try to change appropriate frequency, larger inductor, higher C_{SLOPE} , smaller sense resistor.

In boost mode, the minimum possible V_{IN} for which the converter can regulate the output at full load is the top value of V_{COMP}. Equation 9 shows how to calculate V_{COMP} as function of V_{IN} at full load in CCM operating.

$$V_{\text{COMP(BOOST})} = 1.6V + A_{CS} \cdot R_{\text{SENSE}} \cdot \left(I_{OUT} \cdot \frac{V_{OUT}}{V_{EN}} + \frac{V_{EN}}{2 \cdot L1 \cdot F_{SFF}} \cdot D_{\text{BOOST}} \right) + \frac{2\mu S \cdot (V_{OUT} - V_{EN}) + 5\mu 4}{C_{\text{SLOPE}} \cdot F_{SFF}} \cdot D_{\text{BOOST}}$$

Where D_{BUCK} is given by equation 10.

 $D_{BOOST} = 1 - \frac{V_{IN}}{V_{OUT}}$

From equation 9, a larger L_1 , higher C_{SLOPE} , smaller R_{SENSE} and higher frequency could enlarge the V_{IN} range of boost operation.

Gate Drivers

The PIS2100 is a full bridge controller and it contains 4 NMOSFET gate drivers. The buck half bridge drive pins are HSDRV1 and LSDRV1 as well as the boost half bridge drive pins are HSDRV2 and LSDRV2. Each gate driver is capable of sinking 2A and sourcing 1.5A peak current.

In DCM operation, LSDRV1 and HSDRV2 turn off when the inductor current reaches to zero in buck operation and HSDRV2 turns off when inductor current drops to zero in boost operation. The driver HSDRV2 would not switch unless soft-start progress is finished to prevent possible reverse current from a pre-biased output.

The low side gate drivers LSDRV1 and LSDRV2 are biased from V_{REG} and the high side gate drivers HSDRV1 and HSDRV2 are driven from boot-strap capacitors. The boot capacitors are charged and boosted through external schottky diodes connected to V_{REG} terminal. Avoids to use the diodes with greater forward conduction voltage V_F because the high-side gate drives bias will be greatly reduced below than 5V.

Thermal Protection

The thermal protection circuit monitors the junction temperature and turns off the PIS2100 when junction temperature exceeds temperature trip point. When the protection occurs, the soft-start capacitor will be discharged and the gate drivers shut down immediately. The controller will resume switching after soft-start progress when the junction temperature is below then the thermal shutdown hysteresis value.

Application Information

Figure 5. PIS2100 Typical Application

SPECIFICATION ITEM	RATING
Input Voltage Range	6V~36V
Output	12V
Load Current	6A maximum
Switching Frequency	300kHz
Operating Mode	CCM with Hiccup

Table 3. PIS2100 Typical Application Specification

Figure 5 shows an example of using PIS2100 to convert from a input voltage range of 6V to 36V to 12V fixed output with delivering maximum 6A. To accomplish the design, it is necessary to well consider the following criteria and makes the design balanced for all requirements.

Adjusting Frequency

The PWM switching frequency of PIS2100 can be adjusted through connecting a resistor from FADJ terminal to analog ground. Equation 3 shows how to calculate the corresponding resistor by a given frequency. In this case, use $84.5k\Omega$ E96 series with 1% accuracy to set up 300kHz oscillation frequency.

```
Potens semiconductor corp.
```

PIS2100

Typical Characteristic

PIS2100

Typical Characteristic (cont.)

Figure 14. Buck Current Limit vs. Temperature

Figure 13. EN/UVLO Rising Threshold vs. Temperatur

Figure 15. Boost Current Limit vs. Temperature

Typical Characteristic (cont.)

PIS2100

Typical Characteristic (cont.)

TSSOP-28EP PACKAGE INFORMATION

	Symbol	Dimer	nsions In Milli	meters		
	Symbol	Min.	Nor.	Max.		
	Α			1.20		
	A1	0.05		0.15		
	A2	0.80		1.00		
	A3	0.39	0.44	0.49		
	b	0.20		0.28		
	b1	0.19	0.22	0.25		
	c	0.13		0.17		
	c1	0.12	0.13	0.14		
	D	9.60	9.70	9.80		
	D2	4.83 REF				
	E	6.20	6.40	6.60		
	E1	4.30	4.40	4.50		
	E2		2.70 REF			
	е		0.65 BSC			
	L	0.45	0.60	0.75		
	L1		1.00 REF			
	θ	0°		8 °		

Potens semiconductor corp.

K