1. Description

The PID3190A are high-performance Smart Power Stage (SPS) with 90A peak current capability. They contain high-side and low-side N-Channel MOSFETs and a synchronous buck driver IC. The driver IC integrates high accuracy current sense, temperature sense, comprehensive protection mechanism.

The PID3190A internal current sense is based on drain source voltage (VDS) of both high-side and low-side MOSFET current, using algorithm with temperature compensation and inductance calibration to achieve superior current sense accuracy and lower propagation delay. Protections include cycle-by-cycle over current protection with programmable thresholds, VCC/VDRV UVLO protection, phase fault detection, IC temperature reporting and thermal shutdown. Operation frequency is up to 1.2MHz at steady state and 4MHz at transient state, providing high performance transient response.

The PID3190A are offered in 5mm x 6mm DFN package, which is optimized for high-current application and can greatly reduce parasitic and SW ringing, as well as provide excellent heat transfer path.

2. Typical Applications

- High current, high frequency DC-DC converters
- Voltage Regulators for CPUs, GPUs, and DDR memory arrays of Desktop & Notebook Microprocessors
- Routers, Switches and other ASICs

3. Features

- Internal high accuracy and low delay current sense
- 30V(HS)/25V(LS) breakdown voltage of MOSFETs for higher robustness reliability
- Operating frequency up to 1.2MHz for steady state, 4MHz for transient state
- Peak output current capability up to 90A
- Responds properly to Tri-state PWM input
- Precise output current monitoring of 5µA/A
- Precise temperature monitoring of 8mV/°C
- Support switch node fault detection and flag
- Cycle-by-cycle over current protection
- OCP and thermal shutdown with fault flag
- 5mm x 6mm x 0.9mm DFN-39 package
- Catastrophic Fault Detection
 - a. Over-temperature Protection
 - b. Over-current protection (POCP & NOCP)
 - c. UVLO on VCC and VDRV
 - d. High-side and low-side MOSFET short e. UVLO on BOOT-PHASE

4. Application Diagram

Figure 1. Typical Application Diagram

Potens semiconductor corp.

5. Order Information

Part Number	Package Type	Package Qty	MSL	POCP
PID3190A	DFN5X6-39L	5000	1	120A

6. Package Reference and Pin Functions

Figure 2. DFN5X6-39L Package(Top View)

xxxxxxxx: Date Code

Figure 3. PID3190A Top Marking

P	Pin #	Name	Description
	1	I.C.	Internal connection, can be left floating or connected to VOUT.
	2	LGND	Signal ground. All signals are referenced to this pin.
	3	VCC	Bias voltage for control logic. Connect a X7R 1 μ F ceramic capacitor between VCC and LGND and a 1 Ω resistor between VCC and VDRV pins.
	4	VDRV	The supply of gate driver. Connect a X7R 1μ F cap between VDRV and PGND. VDRV should be connected to +5V power supply.
	-9, 20- 4, 40	PGND	Power ground. It is also the power ground of the low-side MOSFET.
e	6,41	GATEL	Low-side MOSFET driver pin that can be connected to a test point in order to observe the waveform.
1	0-19	SW	Switching node of synchronous buck converter.
2	5-30	VIN	4.5V to 16V high current input voltage connection. Place at least one 1 μ F X7R capacitor between VIN pin and PGND pin. Also connect two 10 μ F X7R /X6S ceramic capacitors in parallel.
	31	NC	No connection, leave the pin unconnected or short to VIN.

PID3190A

32	PHASE	Switching node. For bootstrap capacitor connection only.
33	BOOT	Bootstrap capacitor connection. Connect a minimum 0.22 μ F X7R ceramic capacitor from BOOT to PHASE pin. The bootstrap capacitor provides the charge to turn on the high-side MOSFET. For applications with VIN greater than 14V, use a 2 Ω resistor in series with the bootstrap capacitor to reduce excessive voltage spike at SW node.
34	PWM	3.3V/5V logic level PWM input. PWM input: "High" turns high-side MOSFET on and low-side MOSFET off; "Tri-state" turns both MOSFETs off; "Low" turns the low-side MOSFET on and high-side MOSFET off.
35	EN	Pulling EN high enables the driver; pulling EN low disables the driver and enters ultralow quiescent current mode. Floating this pin is not recommended however a low current pull-down is embedded to keep the driver off if the pin is floating. The EN Pin is VCC tolerant.
36	TMON/FLT	The voltage at this pin is defined by the equation 8mV * (Celsius Temperature) + 0.6V. This pin will be pulled up to 3.3V under severe over temperature, over current, phase fault, BOOT-PHASE UVLO, etc. Refer to Fault Reporting and Identification table for more details. Connect a 10nF decoupling cap between this pin and GND, only 1pcs decoupling cap is needed for multi-phase application.
37	LSET	A resistor from this pin to LGND pin sets the inductor value for the internal current sensing circuitry. $100k\Omega$ for $100nH$; Float for $210nH$; < $10k\Omega$ (or GND) for $120nH$. Leave it floating or short to GND if not used this function.
38	IMON	Sensed current output signal referenced to the REFIN pin or a reference voltage. Current on IMON pin represents inductor current information at 5μ A/A.
39	REFIN	The reference supply voltage for the IMON information. This pin has a low bias current and can be tied to a fixed voltage between 1.1V and 1.9V such as bias rails from a PWM controller. Use a X7R 0.1μ F ceramic capacitor between REFIN and a quiet GND near PWM controller. Can be left floating if not used.
<i>Q⁽</i>	2	

7. Specifications

7.1 Absolute Maximum Ratings Note(1)

		Min	Мах	Unit
VIN		-0.3	25	V
VCC, VDRV		-0.3	6	V
SW, PHASE	DC	-0.3	25	V
	Repetitive pulse Note(2)	-5	25	V
VIN-PHASE		-0.3	25	V
	Repetitive pulse Note(2)	-0.3	30	V
BOOT-GND	DC	-0.3	31	V
BOOT-PHASE	DC	-0.3	6	V
All other Pins		-0.3	VCC+0.3	V
	Lead Temperature (Solder)		260	°C
TJ	Virtual junction temperature range	-40	150	°C
T _{STG}	Storage temperature range		150	°C
Notes:				
(1) Exceeding these rat	ings may cause permanent damage to the device			

(2) Repetitive pulse ≤15 ns. Verified at bench characterization

7.2 ESD Ratings

			Value	Unit
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ^{Note(1)}	±1	kV
V _{ESD} Electrostatic				
	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ^{Note(2)}	±1	kV
Notes:				
(1) JEDEO	C document JEP15	states that 500V HBM allows safe manufacturing with a standard	ESD control process	
(2) JEDEO	C document JEP15	states that 250V CDM allows safe manufacturing with a standard	ESD control process	

Potens semiconductor corp.

7.3 Recommended Operating Conditions

		Min	Max	Unit
VIN		4.5	16	
VCC, VDRV		4.5	5.5	V
REFIN		1.1	1.9	
IMON	IMON Output Range	0.8	VCC-2	V
Fsw		200	1200	kHz
Fsw	During Transient		4000	kHz
Тј		-40	125	°C
Note: The device is not g	uaranteed to function outside of its operating condition	ons.		5

7.4 Thermal Information

	Thermal Metric	Values	Unit
R _{0JA}	Junction-to-air thermal resistance	21	°C/W
R _{0JC(TOP)}	Junction-to-case (top) thermal resistance	20.4	°C/W
R өјс(воттом)	Junction-to-case (bot) thermal resistance	0.2	°C/W

Potens semiconductor corp.

8. Electrical Characteristics

The electrical characteristics involve the spread of values guaranteed within the recommended operating conditions. Typical values represent the median values, which are related to $T_J = 25^{\circ}C$, VCC=VDRV=5V, REFIN = 1.2V, Fsw \leq 1.2 MHz (unless otherwise specified).

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
PWM						
PWM Input High Threshold	V _{PWM_HI}	PWM Low or Tri-state to High	2.4			V
PWM Input Low Threshold	Vpwm_li	PWM High or Tri-state to Low			0.8	v
Tri-state Voltage Rising Threshold	Vtri_hi	Rising from Tri-state to leaving Tri-state	2.1	2.2	2.3	V
Tri-state Voltage falling Threshold	Vtri_lo	Falling from Tri-state to leaving Tri-state	0.9	1	1.1	V
PWM High Propagation Delay	tdelay_pwm_hi	Measured from PWM rising edge to GATEL starts to fall	9.5	14	17	ns
PWM Low Propagation Delay	tdelay_pwm_lo	Measured from PWM falling edge to SW starts to fall	23	40	56	ns
Tri-state to High Propagation Delay	tdelay_tri_hi	PWM Tri-state to High transition to SW>1V	15	21	26	ns
Tri-state to Low Propagation Delay	tdelay_tri_lo	PWM Tri-state to Low transition to GATEL>1V		11	24	ns
Tri-state Hold Off Time from PWM High	Ttrihold_h2t	PWM High to Tri-state transition to SW starts fall	49	61	73	ns
Tri-state Hold Off Time from PWM Low	TTRIHOLD_L2T	PWM Low to Tri-state transition to GATEL starts fall	26	32	38	ns
PWM Input Tri- state Float Voltage	Vpwm_float	PWM Input Floating	1.6	1.7	1.8	V
Pulled up Impedance Note(1)	Rpwm_up	Controlled by EN & VCC_POR & VDRV_POR		19		kΩ

Potens semiconductor corp.

PID3190A

Pulled down Impedance Note(1)RPWM_DOWNAlways enabled10Minimum PWM High/Low Pulse for Safe Operation Note(1)tewm_HigLO_MINRequirement on controller PWM output5050Minimum PWM Tri-state Time for Safe Operation Note(1)tewm_TRI-STATE_MINRequirement on controller PWM output5050Minimum PWM Tri-state Time for Safe Operation Note(1)tewm_TRI-STATE_MINRequirement on controller PWM output5050GATEL Pull Down ResistanceRGL_PULLDNPWM=Tri-state284663HS minimum turn on time Note(1)ToN_MIN_HSSW rising 10% to falling 10%50	kΩ ns ns kΩ ns
High/Low Pulse for Safe Operation Note(1)tpwm_Hi&LO_MINRequirement on controller PWM output5050Minimum PWM Tri-state Time for Safe Operation Note(1)tpwm_TRI-STATE_MINRequirement on controller PWM output5050GATEL Pull Down ResistanceRGL_PULLDNPWM=Tri-state284663HS minimum turn on time Note(1)TON_MIN_HSSW rising 10% to falling 10%5050	ns kΩ
Tri-state Time for Safe Operation Note(1)tpwm_TRI-STATE_MINRequirement on controller PWM output5050GATEL Pull 	
Down RGL_PULLDN PWM=Tri-state 28 46 63 Resistance HS minimum TON_MIN_HS SW rising 10% to falling 10% 50 50	
turn on time T _{ON_MIN_HS} SW rising 10% to falling 10%	ns
	l
LS minimum turn on time ^{Note(1)} T _{ON_MIN_LS} GATEL Rising 10% to falling 50	ns
Current Sense Output-IMON	
Offset AIMON_OFFSET 0A load, RIMON=1kΩ, 25°C 5 5	mV
0A~30A, R _{IMON} =1kΩ -1.5 1.5	А
Overall Accuracy Note(1) AIMON_ALL 30A~ 70A, RIMON=1kΩ -5 +5 VIN=12V, VOUT=0.9V, 800kHz -5 +5	%
GAIN 30A load, R _{IMON} =1kΩ, 25 °C 4.8 5 5.2	µA/A
REFIN Bias Current -1 0 1	μA
IMON L=120nH, VIN=12V, Propagation tdeLAY_IMON Delay Note(1) VOUT=1.8V, Fsw=800kHz, IL Peak to IMON Peak 30	ns
Dynamic range of IMON Note(1) $TA = TJ = -40^{\circ}C \text{ to } 125^{\circ}C, VCC$ = 4.5 V to 5.5 V, VIN = 4.5 V - 16 V, REFIN=1.2 V 0.8 VCC-2	V
Digital Input-EN	
Enable Power- on Delay t_{DELAY_ENON PWM=0, Measured from EN rising edge to GATEL>1V 10 13	μs
Enable Power- off Delay t_DELAY_ENOFF PWM=0, Measured from EN falling edge to GATEL<4V 58 56	ns

Internal Pull-						
down	Ren_pulldn	EN is floating	360	460	557	kΩ
Resistance						
Input High	V _{EN_HIGH}		2			V
Voltage	• EN_INGI		_			•
Input Low	Ven_low				0.8	V
Voltage						
TMON/FLT-Temp	erature Sense Outpu	t and Fault Communication				
Temperature						
Sense Slope	GTMON_SLOPE	0°C <tj<125 td="" ℃<=""><td></td><td>8</td><td></td><td>mV/°C</td></tj<125>		8		mV/°C
Note(1)						
Temperature						
Sense Offset	VTMON_OFFSET	Tj=65°C,0.6V+8mV/°C * Tj		1.12		V
Voltage Note(1)						
TMON Source			436	575	714	
Current	Itmon_source		430	575	/14	μA
TMON Sink	-				05	
Current	Itmon_sink		14	20	25	μA
		Over-Temperature, Over-				
FLT Active High	VFLT_HIGH	Current, Bootstrap	3	3.3	3.6	V
		Undervoltage, or Phase Fault				
FLT Active Low	VFLT_LOW	No Fault, VCC <uvlo< td=""><td></td><td></td><td>0.28</td><td>V</td></uvlo<>			0.28	V
FLT mode	IFLT_SOURCE	VTMON/FLT=0V	4	4.6	5.2	mA
Source Current	IFET_SOURCE	VIMON/FLI-OV	4	4.0	5.2	IIIA
TMON Active	* *					
Pull-down	RTMON_PULLDN	No Fault, VCC <uvlo< td=""><td>25</td><td>27</td><td>29</td><td>kΩ</td></uvlo<>	25	27	29	kΩ
Resistance						
Phase Fault Dete	ction					
LS FET on, HS		VPHASE-VPGND higher than,				
FET Short	VHS_FET_FLT_TH			0.85		V
Threshold		GATEL>1V				
TMON/FLT						
Delay When HS	tdelay_hs_flt	PWM High-Low Cycles to		1		cycle
FET Fault Note(1)		TMON/FLT high				
HS FET on, LS						
FET Short	VLS_FET_FLT_TH	VIN-VPHASE higher than,		1.75		V
Threshold		GATEH-VPHASE>1V				

Potens semiconductor corp.

PID3190A

TMON/FLT Delay When LS FET Fault ^{Note(1)}	tls_fet_flt	PWM High-Low Cycles to TMON/FLT high		1		cycle
Over-Temperature	e Protection					
Rising Threshold Note(1)	Trise	TMON/FLT pulled up high, Driver Temperature		140		°C
Falling Threshold Note(1)	TFALL	TMON/FLT released Driver Temperature		120		°C
Cycle-by-Cycle O	ver-Current Protection	on		1		
Positive Peak Over-Current Threshold	loc			120		A
Positive Over- Current Hysteresis	loc_hys		×	10		A
TMON/FLT Delay When OCP	tdelay_ocp	SW High-Low Cycles to TMON/FLT high Continuous 22 to report Continuous 3 to back	2	22		cycle
I Limit Comparator Input to Output Propagation Delay ^{Note(1)}	tdelay_imon_comp	Input Signal=200mV dv/dt=0.17mV/ns		60		ns
I Limit Blanking Time Note(1)	tBLANK_ILIMIT	De-glitch filter (blanking) time for I Limit comparator trip		50		ns
Negative Over- Current Trip Low Level	INOCP	SW Low-High Cycles to TMON/FLT high		-50		A
INOCP_HYS Note(1)	NOCP Hysteresis			20		А
VCC and VDRV U	Inder Voltage Lockou	ut	•	•		
VCC Rising	[4.1	4.4	V
Threshold	Vvcc_rising					
-	Vvcc_rising Vvcc_falling		3.4	3.9		V

PID3190A

VDRV Rising Threshold	Vvdrv_rising			4.2	4.5	V
VDRV Falling Threshold	Vvdrv_falling		3.3	3.75		V
VDRV Hysteresis	Vvdrv_hys			0.45		V
Bootstrap Refresh Off Threshold	VBOOT_REFRESH_OFF			3.7	4.0	v
Bootstrap Refresh On Threshold	VBOOT_ REFRESH _ON		3.1	3.25	~	V
Bootstrap Refresh Hysteresis	VBOOT_REFRESH_HYS		. (0.45		V
General						
		VIN=12V, L=120nH EN=3.3V, PWM=800kHz, Duty=15%	6	5.4		mA
VCC Supply		VIN=12V, L=120nH EN=3.3V, PWM=500kHz, Duty=15%		5.4		mA
Current Note(1)	Ivec	EN=3.3V, PWM floating BOOT to PHASE=5V, SW short to GND	3.2	5	6.9	mA
		EN=0V, PWM floating BOOT to PHASE=5V, SW short to GND	38	65	92	μΑ
		VIN=12V, L=120nH, EN=3.3V, PWM=800kHz, Duty=15%		34.7		mA
		VIN=12V, L=120nH, EN=3.3V, PWM=500kHz, Duty=15%		21.7		mA
VDRV Supply Current	Ivdrv	EN=3.3V, PWM Floating, BOOT short to VDRV, SW short to GND	180	240	300	μA
		EN=0V, PWM Floating, BOOT short to VDRV, SW short to GND	129	184	240	μA

PID3190A

LSET Output	Vlset	LSET	1.05	1.2	1.35	V	
LSET							
		BOOT to PHASE=5V		C			
current	BOOT2PHASE	V(PWM)=1.65V PHASE=16V,	179	235	291	μΑ	
BOOT to phase		EN=3.3V, VIN=16V,					
SW Pull Down Resistance Note(1)	$R_{SW_{PD}}$	VCC=VDRV=0V	14.7	16	16.9	kΩ	
SW Floating Voltage	Vsw_float	V(PWM)=1.65V	1.2	1.4	1.7	V	
		EN=0V, VIN=15V, V(PWM)=1.65V, BOOT to PHASE=5V, SW short to GND		34	112	μA	
VIN Bias Current	Ivin	EN=3.3V, VIN=15V, V(PWM)=1.65V, BOOT to PHASE=5V, SW short to GND	202	430	659	μA	

Note:

(1) Guaranteed by design or bench characterization data, not tested in mass production.

Potens semiconductor corp.

9. Typical Performance Characteristics

Test conditions: VIN=12V, VCC=VDRV=5V, VOUT=1.8V, LOUT=120nH, Fsw=800kHz, TA=25°C and natural convection cooling unless otherwise specified.

Figure 4. Efficiency Curve for 1.8V VOUT

Output Current [A]

40

50

60

70

Figure 8. IMON Average Accuracy VOUT=1.8V

Figure 5. Efficiency Curve for 0.9V VOUT

Figure 7. IMON Error Consistency VOUT=0.9V

Figure 9. IMON Average Accuracy VOUT=0.9V

Potens semiconductor corp.

10

20

30

IMON Error vs. VDRV (VCC=VDRV)

Figure 11. IMON Accuracy vs. VDRV

Figure 12. IMON Accuracy vs. VIN

Figure 13. IMON Accuracy vs. Fsw

Figure 15. Driver Current vs. Driver Voltage

Potens semiconductor corp.

10. Block Diagram

11. Operation

11.1 Startup & Shutdown

The PID3190A is enabled by both EN pin input signal and VCC/ VDRV/ BOOT-PHASE UVLO. During VCC UVLO, the driver is fully shutdown (GH, GL=0) and requires 50µs to startup. If VCC is ready and EN is low, the driver is partially shutdown (GH, GL=0) and requires 10µs to startup. If both VCC and EN are ready but VDRV and BOOT-PHASE UVLO, the driver analog circuitry being alive but outputs forced into Tri-state (GH, GL=0). When EN pin is open or pulled down by a PWM controller or an ASIC, the driver goes to sleep mode with very low quiescent current.

VCC>	VDRV>	BOOT-PHASE>	EN	Driver State					
UVLO	UVLO	UVLO							
0	x	x	~	Full driver shutdown (GH, GL=0), requires					
	X		Х	50µs for startup;					
1	x	x	0	Partial driver shutdown (GH, GL=0), requires					
				10µs for startup					
4	0	0	1	Driver analog circuitry alive but outputs					
1	0	0		forced into Tri-state (GH, GL=0)					
1	1	1	1	Enabled (GH/GL follows PWM)					
Х	Х	Х	Open/0	Disabled (GH, GL=0)					

Table 1.	UVLO	and Driver	Truth Table	
	OTEO .		math fubic	

Potens semiconductor corp.

11.2 Tri-state PWM Input

The PID3190A features a Tri-state 3.3V/5V PWM input gate drive design. The Tri-state gate drive has logic HIGH, logic LOW and a Tri-state shutdown window. When PWM input signal enters and keeps Tri-state for the defined hold-off time, both GH and GL are pulled low, so that both HSFET and LSFET are turned off, which helps to reduce output overshoot during load release or enter diode emulation mode to increase light-load efficiency. When load releases, multi-phase controller could discharge inductor current with a deeper slope (VOUT + Vdiode)/L, instead of VOUT/L, by sending Low - Tri-state PWM pulse. This reduces overshoot during large load release transient.

I	EN	PWM	GH	GL
(0	Х	0	0
	1	Tri-state	0	0
	1	0	0	1
	1	1	1	0

Table 2. Tri-state PWM Input Truth Table

11.3 LSET Pin Function

Inductor value setting pin. After VCC is above UVLO, a 1.2V internal voltage source is applied to this pin, the output current is monitored to set inductor starting point for IMON reconstruction algorithm. The inductor value is set by $1k\Omega/nH$ ratio. If the resistance is less than $10k\Omega$ or short to GND, L=120nH (default) is set, if this pin is floating, L=210nH is set. The highest inductor value is 1.2uH. To get better IMON performance at startup point, it is recommended to use inductor value matching this calculation result. If not used, left this pin floating or short to GND,

11.4 Current Sensing and Reporting

The PID3190A integrates high accuracy current sense feature, which is based on low-side MOSFET drain source voltage (VDS) when it is on, and a synthesized current when high-side MOSFET is on. The driver incorporates build-in temperature compensation and inductance calibration for current sense to achieve high current sense accuracy and lower propagation delay. The reported current is in the form of current output and the gain is 5 μ A/A from the IMON pin. In order to convert this current into voltage, a 1 $k\Omega$, 0.1% resistor is recommended between PWM controller's ISEN and ISENREF pins and this resistor should be placed close to the PWM controller. In order to get a negative current reporting, it is not recommended to set ISENFEF to GND, but to a voltage between 1.1V and 1.9V. If the PWM controller ISEN sampling can accept a current signal, an external 1 $k\Omega$, 0.1% resistor is not required, and PID3190A IMON pin can be directly connected to the controller's corresponding ISEN pin. PID3190A REFIN pin can be left floating or can be connected to a voltage source between 1.1V and 1.9V.

Potens semiconductor corp.

11.5 Temperature Reporting and Over-Temperature Protection

PID3190A integrates an internal temperature detection circuitry. The sensed temperature is reported at the TMON/FLT pin with a linear voltage slope of 8mV/°C and a 0.6V offset at 0°C. TMON/FLT pin is also used as Faults indication pin, when positive over current protection (POCP), over-temperature protection (OTP), BOOT-PHASE UVLO, LSFET_SHORT or HSFET_SHORT occur, by pulling this pin up to 3.3V. When VDRV_UVLO occurs under power up or normal operation conditions, the TMON/FLT pin is weak pulled down to 0V (or VTMON from other Power Stages in same loop).

When the driver temperature rises higher than 140°C, the TMON/FLT pin will be pulled up to 3.3V and the driver will stop to respond to the controller's PWM. In this way, even if the controller doesn't latch-up and continues to send PWM, the MOSFETs will not switch to prevent the power stage from overheat and affecting long-term reliability. When the driver temperature drops below 120°C, TMON/FLT returns to the voltage value corresponding to driver detected temperature, and the driver starts responding to PWM again.

11.6 Positive Over Current Protection

PID3190A features Positive Over Current Protection (POCP) architecture by real-time sensing high-side MOSFET drain source voltage (VDS) when it is on. Once high-side MOSFET real-time sensing current exceeds the POCP threshold, a POCP event is asserted, and the PWM high pulse will be truncated after a short delay so that the high-side MOSFET peak current is almost equal to POCP threshold. If POCP is triggered for 22 consecutive SW cycles, the TMON/FLT pin is pulled up to 3.3V with the driver continuing to respond to PWM. When POCP is not triggered for 3 consecutive SW cycles, POCP event is de-asserted, and TMON/FLT returns to the voltage value corresponding to driver detected temperature.

PID3190A also features a POCP hysteresis circuitry and the typical threshold (I_{OC_HYS}) is 10A. In a PWM cycle, PWM is high and POCP is triggered, but when the PWM is low, the valley current value is greater than POCP- I_{OC_HYS} , then the next PWM high pulse from controller will be ignored and this kind of ignored PWM pulses will not be counted as POCP events. In other words, POCP assertion and de-assertion only counts the number of SW pulses.

11.7 Negative Over Current Protection

In some application scenarios such as DVID (Dynamic Voltage Identification) and OVP (Over Voltage Protection), the low-side MOSFET will be on for a long time to discharge the output energy. If the low-side MOSFET is left on for too long due to incorrectly optimized control loops, the power stage may be damaged because of inductor reverse saturation. Even if the inductor is not reverse saturated, when the low-side is off, this large negative current will pass through the body diode of the high-side MOSFET and may damage the body diode of the high-side MOSFET. In summary, NOCP is necessary.

PID3190A features a Negative Over Current Protection (NOCP) circuitry by real-time sensing low-side MOSFET drain source voltage (VDS) when it is on. Typical threshold is -50A. When the low-side MOSFET real-time sensing current reaches to -50A, the driver will force the low-side MOSFET to be off and high-side MOSFET to be on. But the driver will continue to respond to PWM and report current. There is also a NOCP hysteresis with a typical value of 20A. That is to say when negative current rises to -30A from - 50A, low-side MOSFET will follow PWM levels. Note that NOCP event will not pull high or pull low TMON/FLT pin.

11.8 VDRV Undervoltage Lock-out (UVLO)

PID3190A integrates an VDRV UVLO circuitry to actively detect the voltage of the VDRV before power-on and during operation.

Before powering up, if VDRV voltage is below the UVLO threshold (Typical 4.2V), the PWM will be weakly pulled down to GND. This can be used as an indicator signal to tell the PWM controller that the PID3190A is still in VDRV UVLO status. As soon as VDRV voltage exceeds the UVLO threshold, the PWM voltage will change to Tri-state (typical 1.7V) from 0V, indicating that the PID3190A is ready for operation. At the same time, PID3190A will short IMON and REFIN to indicate that it is in UVLO condition.

In normal operation condition, if VDRV UVLO occurs, the device will stop switching. IMON pin, PWM pin and TMON/FLT pin will be pulled down to 0V. PWM pin and TMON/FLT pin are weekly pulled down to GND, so PWM pin voltage can be driven by controller but no switching on Power Stage, and If there are multiple phases connected in the same control loop TMON/FLT pin will continue reporting the highest device temperature.

11.9 Bootstrap Capacitor Under-Voltage Protection

PID3190A keeps monitoring the BOOT-PHASE voltage. If EN, VCC and VDRV are ready, but the voltage across the bootstrap capacitor voltage is lower than $V_{BOOT_REFRESH_ON}$ (Typical 3.25V), PID3190A ignores the PWM input signal and starts the boot refresh circuitry. The boot refresh circuitry turns on LSFET for 700ns every 8µs until BOOT-PHASE voltage is above $V_{BOOT_REFRESH_OFF}$ (Typical 3.7V). If the BOOT-PHASE voltage is lower than 3V, then TMON/FLT will be pulled up to 3.3V, IMON/FLT pin is pulled to GND and PID3190A latched up.

Potens semiconductor corp.

11.10 High-side MOSFET and low-side MOSFET Short Protection

This feature reports the damage of high-side MOSFET and low-side MOSFET through TMON/FLT pin. In high output current scenario due to poor output inductor selection or incorrectly optimized control loop, the inductor can be saturated in either the positive or negative direction, which can damage high-side MOSFET or low-side MOSFET.

This function is enabled after the VIN rises above 4V and disabled when VIN falls below 3.65V. When lowside MOSFET is on, the driver continuously monitors the VDS voltage of the low-side MOSFET, so that once this voltage is higher than $V_{HS_FET_FLT_TH}$ (Typical 0.85V), the high-side MOSFET short event is asserted. When high-side MOSFET is on, the driver continuously monitors the VDS voltage of the highside MOSFET, and once this voltage is higher than $V_{LS_FET_FLT_TH}$ (Typical 1.75V), the low-side MOSFET short event is asserted. For both high-side MOSFET short and low-side MOSFET short events, TMON/FLT is pulled up to 3.3V in 1 PWM cycle, the driver continuous to respond to PWM commands with IMON pulled up to 3.3V.

11.11 Fault Reporting and Identification

PID3190A features rich protection functions and fault reporting by identification of combinations of PWM, IMON, TMON/FLT status, including:

- VCC_UVLO and disabled by EN
- VDRV_UVLO (Before power up and normal operation)
- Positive OCP (POCP, Peak and Valley)
- Negative OCP (NOCP, Peak and Valley)
- BOOT-PHASE UVLO & Refresh
- LSFET Short: HS on (Internal GATEH-PHASE>1V) and VIN-PHASE >1.5V
- HSFET Short: LS on (GATEL>1V) and PHASE-PGND>0.85V
- OTP

A .

Fault Name	Fault Description	Fault Response	PWM	IMON	TMON/FLT	
VCC_UVLO or disabled by EN	VCC Undervoltage Lockout or disabled by EN pin		High-Z	=REFIN By external circuits	High-Z	
VDRV_UVLO (Power up)	Driver Undervoltage Lockout	latching (PWN	Weak pull down to 0V (PWM pin voltage can be driven by controller,	=REFIN	Weak pull down to 0V (or VTMON from	
VDRV_UVLO (Normal operation)	Driver Undervoltage Lockout		no switching on Power Stage)	0)/	other Power Stages in same loop)	
POCP (Sourcing) (Peak and Valley)	Peak positive SW current limit; HS FET not turn on if IL> I _{OC} - I _{OC_HYS}	Cycle-by-Cycle Clamp inductor peak current	Response to PWM	Continues	Assert: 22 cycles to asserted. De-assert: 3 OCP-free cycles	
NOCP (Sinking) (Peak and Valley)	Negative overcurrent: peak negative current threshold that turn off the LSFET			current	Not asserted	
BOOT_UVLO	OT_UVLO Source of the second seco		Ignore PWM till BOOT_UVLO clear	0V when TMON asserted	Asserted and latch up if lower than 3V	
LSFET_SHORT	HS on (GATEH- VPHASE>1V) and VIN- VPHASE > 1.75V LS on (GATEL>1V) and VPHASE-VPGND > 0.85V	Continue to respond to PWM commands	Response to PWM	=3.3V High Priority	Asserted and latch up	
OTP	Over Temperature Protection	Shutdown, non- latching	Power Stage stops	REFIN	Asserted =3.3V	

12. Application

12.1 Typical Application

Figure 19. Simplified 8 Phase Schematic

12.2 Reference Schematic

Figure 20. Reference Schematic with Notes

13. Mechanical, Packaging

13.1 Package Size

Figure 21. Package Size Information

13.2 Solder Resist

Figure 22. Recommended Solder Resist

Potens semiconductor corp.

13.3 Reel and Tape Information

Table 4. Tape Dimensions Information

	Device	Package	Pins	SPQ	А	В	К	Р	P0	W	Pin1
		Туре	PINS	(pcs)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
	PID3190A	DFN5X6-39L	39	5000	6.3±0.1	5.3±0.1	1.2±0.1	8±0.1	8±0.1	12±0.3	Q2

PID3190A

13.4 Reel Box Dimensions

Figure 25. Reel Box Dimensions Information

Potens semiconductor corp.